Welcome to Petroleum Geology Forums

This is a free online community that aims to bring petroleum professionals and geologists together and share valuable knowledge. Registration is easy so become a member now for instant free access.
  • Petroleum Geologists can stay up to date with industry related topics and exchange ideas and concepts.
  • Upstream Oil and Gas Consultants get a chance to share their expertise and gain exposure to land future projects.
  • Geology students and graduates can join the discussion and get into contact with potential future employees.

  >> Register Now

Post new topic Reply to topic  [ 1 post ] 
Compressional salt tectonics and synkinematic strata... 
Author Message

Joined: Fri Mar 11, 2011 9:00 pm
Posts: 238
Post Compressional salt tectonics and synkinematic strata...
Basin Research: Compressional salt tectonics and synkinematic strata of the western Kuqa foreland basin, southern Tian Shan, China

The synkinematic strata of the Kuqa foreland basin record a rich history of Cenozoic reactivation of the Palaeozoic Tian Shan mountain belt. Here, we present new constraints on the history of deformation in the southern Tian Shan, based on an analysis of interactions between tectonics and sedimentation in the western Kuqa basin. We constructed six balanced cross‐sections of the basin, integrating surface geology, well data and a grid of seismic reflection profiles. These profiles show that the Qiulitage fold belt on the southern edge of the Kuqa basin developed by thin‐skinned compression salt tectonics. The structural styles have been influenced by two major factors: the nature of early‐formed diapirs and the basinward depositional limit of the Kumugeliemu salt. Several early diapirs developed in the western Kuqa basin, soon after salt deposition, which acted to localize the subsequent shortening. Where diapirs had low relief and a thick overburden they tended to tighten into salt domes 3000–7000 m in height. Conversely, where the original diapirs had higher relief and a thinner overburden they tended to evolve into salt nappes, with the northern flanks of the diapirs thrusting over their southern flanks. Salt was expelled forward, up dip along the mother salt layer, tended to accumulate at the distal pinch‐out of Kumugeliemu salt located at the Qiulitage fold belt. Furthermore, the synkinematic strata (6–8 km thick) of the Kuqa basin indicate that during the Cenozoic reactivation of the Tian Shan, shortening of the western Kuqa basin was mainly in the hinterland until the early Miocene. Then, compression spread simultaneously southwards to the Dawanqi anticline, the Qiulitage fold belt and the southernmost blind detachment fold at the end of Miocene. The western Kuqa basin has a shortening of ca. 23 km. We consider that ca. 9 km was consumed from the end of the Miocene (5.2/5.8 Ma) to the early Pleistocene (2.58 Ma) and another ca. 14 km have been absorbed since then. Thus, we obtain a ca. 3.4/2.8 mm year−1 average shortening from 5.2/5.8 to 2.58 Ma, followed by a 60–90% increase in average shortening rate to ca. 5.4 mm year−1 since 2.58 Ma. This suggests that the reactivation of the modern Tian Shan has been accelerating up to the present day.

Go to Article

Fri Jan 06, 2012 10:43 am
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 1 post ] 

Related topics 
 Topics   Author   Replies   Views   Last post 
There are no new unread posts for this topic. Basin modelling of a lignite‐bearing salt rim...




Fri Mar 16, 2012 10:02 pm

ArticlePoster View the latest post


Search for:
Jump to:  

Content on EPGeology.com is intended for personal use only and to supplement, not replace, professional judgment. EPGeology.com disclaims any and all liability for your use of its content. As most of our content is supplied by our users we can not check copyright, and stress that copyright remains at the original owner. If you suspect copyright infringement please use the contact form to report it.
Contact || © EPGeology.com. || Powered by phpBB Asteroid Mining