Welcome to Petroleum Geology Forums

This is a free online community that aims to bring petroleum professionals and geologists together and share valuable knowledge. Registration is easy so become a member now for instant free access.
  • Petroleum Geologists can stay up to date with industry related topics and exchange ideas and concepts.
  • Upstream Oil and Gas Consultants get a chance to share their expertise and gain exposure to land future projects.
  • Geology students and graduates can join the discussion and get into contact with potential future employees.

  >> Register Now





Post new topic Reply to topic  [ 1 post ] 
Thermo‐tectonic evolution of the south‐central... 
Author Message

Joined: Fri Mar 11, 2011 9:00 pm
Posts: 14670
Post Thermo‐tectonic evolution of the south‐central...
Basin Research: Thermo‐tectonic evolution of the south‐central Pyrenees from rifting to orogeny: insights from detrital zircon U/Pb and (U‐Th)/He thermochronometry

Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.

Go to Article


Thu Dec 08, 2011 2:32 am
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 1 post ] 





Search for:
Jump to:  
cron


Content on EPGeology.com is intended for personal use only and to supplement, not replace, professional judgment. EPGeology.com disclaims any and all liability for your use of its content. As most of our content is supplied by our users we can not check copyright, and stress that copyright remains at the original owner. If you suspect copyright infringement please use the contact form to report it.
Contact || © EPGeology.com. || Powered by phpBB Asteroid Mining

phpBB SEO