Welcome to Petroleum Geology Forums

This is a free online community that aims to bring petroleum professionals and geologists together and share valuable knowledge. Registration is easy so become a member now for instant free access.
  • Petroleum Geologists can stay up to date with industry related topics and exchange ideas and concepts.
  • Upstream Oil and Gas Consultants get a chance to share their expertise and gain exposure to land future projects.
  • Geology students and graduates can join the discussion and get into contact with potential future employees.

  >> Register Now

Post new topic Reply to topic  [ 1 post ] 
A fast integral equation solver for 3D induction well... 
Author Message

Joined: Fri Mar 11, 2011 9:00 pm
Posts: 238
Post A fast integral equation solver for 3D induction well...
Geophysical Prospecting: A fast integral equation solver for 3D induction well logging in formations with large conductivity contrasts

Simulation of induction logging responses in formations with large conductivity contrasts is an important but challenging problem due to the singularity of a linear system caused by large contrasts. Also, three‐dimensional (3D) analysis of complex geophysical structures usually encounters high computational demands. In this paper, a pre‐corrected fast Fourier transform (pFFT)‐accelerated integral equation method is applied to overcome these difficulties. In the approach, the entire formation is included in the solution domain. The volume integral equation is set up in the region based on the fact that the total field is the summation of the excitation field and the secondary field. The emitted field by the transmitter coil (treated as a magnetic dipole) is regarded as the excitation of the system. Then the method of moments (MoM) is used to solve the integral equation. To reduce the high computational requirements of the MoM, the pFFT method is used to speed up the solution of the matrix equation and reduce the memory requirement as well. The resultant method is capable of computing induction logging problems involving large and complex formations. For problems with high conductivity contrasts, the solution of the matrix equation usually converges very slow or even fails to converge due to the large condition number of the coefficient matrix. To overcome this difficulty, an incomplete LU pre‐conditioner is used to significantly speed up the convergence of the matrix equation, thus further reducing the computation time. Numerical results show that the present method is efficient and flexible for 3D simulation of induction logging and is specifically superior for problems with high conductivity contrasts.

Go to Article

Tue Jul 03, 2012 2:53 am
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 1 post ] 

Search for:
Jump to:  

Content on EPGeology.com is intended for personal use only and to supplement, not replace, professional judgment. EPGeology.com disclaims any and all liability for your use of its content. As most of our content is supplied by our users we can not check copyright, and stress that copyright remains at the original owner. If you suspect copyright infringement please use the contact form to report it.
Contact || © EPGeology.com. || Powered by phpBB Asteroid Mining